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Magnetic forces belong to the class of forces which have no noticeable effects on the char- 
acter of satellite orbits. They are taken into account in problems on the motion of satel- 
lites near a center of mass, but are disregarded in problems on their orbital motion. 

On the other hand, in stability studies one is obliged to take magnetic forces into ac- 
count, since even very weak ones can give rise to unstable motion. In orbit correction prob- 
lems, for example, it is also very important to know which forcea have any-marked effect on 
the orbits of artificial earth satellites and which forces are practically negligible. 

Studies of the stability of circular motions in gravitational fields have been carried out 
by Chetaev [ 11, Duboshin [A, Demin 13 and 41, Aksenov, Grebenikov [4l, and Degtiarev [5 
to 71. 

In the present paper we consider the stability of circular motions in the axisymmetrical 
gravitational and dipole magnetic fields of planets. The necessary and sufficient conditions 
for stability are derived. In the case of earth satellites it is proved that the equations of 
motion admit only of circaIar equatoriaI orbits and that the stability conditions are fulfilled 
for such orbits. 

1. Formulation of the problem. The equations of motion. Letnscon- 
sider the motion of a satellite of mass m in the gravitational and magnetic fields of a planet 
Our coordinate system is orthogonal and planetocentric; the z-axis is directed along the 
axis of rotation of the plsnet. 

It is assumed that the gravitational axis has an axis of symmetry (the r-axial, i.e. that 
the potential of the gravitational field is of tbe form U = U(p, L), where p* = s2 + y% 

An artificial satellite is likely to contain current-carrying conductors, batteries: capaci- 
tors, electromagnets, etc ., all of which can subject it to magnetic forces. As before, in in- 
vestigating tbe motion of the satellite center of mass we shall consider the satellite as a 
point of maas m equal to the total mass of the aatellite; this point mass is assumed to carry 
the charge c equal to the total charge on 
magnetic force is equal to cc*l[~~x~~] 

the 
h 

satellite. Then, by the Lorentz formula, the 
w ere Y is the satellite velocity vector, B is the mag 

netic field intensity vector, and E is the velocity of Ii ght. If the magnetic field has the po- 
tential V, then B = grad V. For the dipole magnetic field with z-axis we have V = MI/( 
+ z 2) 31% where hf is the magnetic moment of tbe planet. In the case of the Earth, the a 

*+ 

field constitutes the major portion of the magnetic field. 
ipole 

The vector differential equation of satellite motion in the gravitational snd magnetfc 
fields of a planet is of the form 

~=gradU++Hi] 

where r is the radius vector of the satellite. In the cylindrtcal coordinates p, $, I the aq- 
uations of motion can be written as 
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Hence, the circular orbits 

P = po = const, 2 = z(J = coma, u = (I@ = PO’ 0 = const 
are possible if the following conditions are fulfilled: 

(1.2) 

+ kao (pea - 2~0’) = o Jkoozo 

po (PO2 + zo$” ’ (PO’” + zozf’s 
=o (1.3) 

Circular orbits (1.2) are circles in the plane perpendicular to the axis of rotation of the 
planet with their centers on this axis. 

The question of which circular orbits are possible in the Earth’s gravitational and mag- 
netic fields will be taken up in Section 4. 

2. Neceaaary conditiona for stability. Let us derive the stability condi- 
tions for circular orbits (1.2). We introduce the following notation for the perturbations: 

P = PO + 219 r = 20 + 221 c = co + 23, p=q, i=:z; 

Substituting these values of p’, p’, z, t ; CT into Eqs. (l.l), we obtain the equations of 
perturbed motion, 

(00 + 5) a 
xi’ - fpo + 21)8 = 

au tpo + zlzo + 4 k (co -I- ~3) [(PO + ~1)~ - 2 (zo + x2)“] 

a (PO + 21) + (PO + 21) [(PO + z1)2 + (20-t ,2)2F 

za” = 
au (PO + Xl* 209 4 3k (50 + 4 (20 + ~a) 

a (20 + 4 + [(PO + d2 + (zo + ~p.Pl”” 
(2.1) 

XI)’ = 
3k (PO + 11) (20 -I 4 -(po+zl)( [(p0+21)~+(zo+~a)~P 

22’ + k [(PO + d2 - 2 (20 + ~a)~1 21. 

[(PO + x1)2 + (zo+ qaP/ 

Expanding the right-hand sides of Eqs. (2.1) in series in powers of x1, xx, xx, xi, z; 
and retaining first-order terms only, we obtain the equations for the first approximation of 
the perturbed motion, 

. . 
=1 - %I% - yiaza - E13zs = 09 - YZl r1 + z "2 - Baa%2 - E12X3 = 0 I^ ^\ 

Tal = 
Ukaopozo 

o - tpoa + zoa)‘l~ (2.3) 

o + 
koo (6202 - 9poa) 30 

SlS==-5 -t 
k (pea - 220~) 

po (PO2 + zo2)“, ’ PO po (PO” + zozf’* 

3kz,, 

b= (po2 + zo2p ' 

kpo (pea - 2~0~) 3kpo2zo 

qzl= tpo2 + zo2)'/l ' '122= cpo2 + zo2)" 

The characteristic equation of system (2.2), 
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ha-au - ha - 41s 

- Tai ha-pas -6s =o 

rlS& ?=A I 

can, with allowance for notation (2.3), be transformed into 

li, ]A4 - (a0 + PO) ha + (aoP0 - roa)l = 0 (2.4) 

a0=ck- q2&2=(~)0++-(F)O- 3k;6”oFi22;;f’ - “2$fyz$2’r 

h = P22 - f,22423 = z 
( 1 0 

+ 3k;;o~;22;;~’ - - $22$ 

(2.5) 

To = Tla - rlra~ls= Tzi- 7j21f23= 

aw 

i 1 

15koopozo 3k2pozo (po2 - 220~) 
apaz o - po2 + ,,2),,, - 

(PO2 + zo2)5 

For the roots of Eq. (2.4) we have the expressions 

h1,2,3,4= f I/‘/Z (a0 + PO] f VVd(a0 + PO)" -(a0P0 -Ye), hs= 0 

Let us prove that the necessary conditions for the stability of circular orbits (1.2) are 

a,<& aoBo - ~~2 > 0 (2.6) 

We do this by provin 
(1.2) is unstable. If 

that if at least one of inequalities (2.6) is violated, then solution 
u o B o 

(2.4) has the positive root 
- y. 2 < 0, then regardless of the sign of U, characteristic Eq. 

h = + V%(cco + PO) + V1/4(a0 + P012 - (a0P0--r0~) 

If, on the other hand, CQ> 0 but ho& - yo2 > 0, then @o > 0 and there exists the posi- 
tive root 

h = + 1/l/2 (a0 + 80) + V/4 (a0 - Po)~ + r*) 

“p ye UO=~ = yo.- - 0 will not be considered. Now, by Liapnnov’s theorem on insta- 
bility 8 , if the c aracterrstic equation has positive roota, then solution (1.2) is unstable 
on the basis of the first approxfmation. 

8., Sufficient conditions for atability. Theae conditions will be obtained 
by considering the complete equations of perturbed motion (2.1). These equations admit of 
the existence of the first integrals, i.e. the energy integral F, and the area integral F,, 

+ xd’r] -U (PO + XI, zo + 22) --T$ + U (PO, z”) = const 

k (PO + XI)* kpo2 

F2= xs - [(PO + x1)2 + (z. + x2)2]*/' + (PO2 + z,q: = const (3.1) 

Let us investigate stability by Liapnnov’s second method [8]. Following Chetaev [I], we 
construct the Liapunov function as a linearly quadratic sheaf of the first integrals (3.1), 

W = FI - $ Fa + AF$ 

where A is a still undetermined quantity. Expanding IF in a Maclaurin series in the variables 
. 

Xl’ XI9 s* “h x3 
x3, we 0 tain 

making use of (1.3), and retaining second-order terms in xt, xi, x2, x& 

W = l/z xl’2 + */2 xze2 + l/z [ - aq2 - fizz2 + ( po7 + 2 A) x82 - 

- 2TWQ-- 2QV1r.q - 2Qxaxx]+ . . . (3.2) 

a = al - a2, 

aw 

C-J 

3kaozo (3po* - 222) (3.3) 
7= -h-T29 

n= apaz o- PO (PO2 + zos,‘/l 
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4=e1--4% g1+, az = 2.4azo, azo = 
k2p02 (pus - 2zoz)z 

(PO8 + zo2)5 

Pz = 2APs0, 

9kzpo*zoz 

SzO = (po2 + zo2)5 Ts = 2&a’, rz” = 
3kzp$zo (p,,S - 2~02) 

(PO! + zoy 

En = 2_4Ez0, la” = kpo (‘OS -22;f’ 
(PO2 + zo ) 

qz = 2,4~‘=, qz” = - 
3kpo2zo 

(PO2 + zo2)“s 

But since W’= 0, the function W satisfies the conditions of Liapunov’s stability theorem 
provided W> 0. For sufficiently small perturbations z z,, xi, xi, the sign of W is deter- 
mined by the sigu of the quadratic form appearing on th’ e right-hand side of (3.2); the latter 
is in turn positively defined (by virtue of the Sylvester criterion) if the principal diagonal 
minors of the matrix 

II 

-a -_r --4 

-P -llz 

-; --‘la II 2A + PO-~ _ 

are positive. This yields the three inequalities 

u. <9, aB -y2>0 (3.4) 

(2A + P~-~) (aS - va) + atlea - 2y%rl~ + BE” > 0 (3.5) 

It can be proved that (3.4) are fulfilled if the inequalities 

ai < 0, a#r - Ora > 9 (3.6) 

are fulfilled. 
In fact, if we take A > 0, then CL > 0 and the second inequality of (3.4) follows from the 

first. The second inequality of (3.4 ? can be written as 

(a#r - v?) - (ail& + az& - 2~iyz) > 0 (3.7) 

since U, p, - yZ 2 = 0. Taking account of notation (3.3), we can rewrite the second term in 
(3.7) as 

k2Pos 
2‘4 (po2 + zo2)5 [9p&02(-al) - 2.3~0~0 (2~0’ - po’j ?‘I+ (220’ - Po*)~ (- Sr)l 

It is clear from this that the latter expression is positive if (3.6) are fulfilled; hence, 
(3.6) imply (3.7) and therefore the second inequality of (3.4). 

Now let us consider inequality (3.5). After a series of transformations (in the course of 
which the terms with A2 and A3 drop out) this inequality can be written as 

24 l(atBt - y?) - fro-* (az”B1 + aiPz” - 2Yt”yz) - 8z”%? - 2 (vi%nz” + fGILo)l + 

+ po-* C44 - YJ + f%” > 0 
Clearly, we can choose an A > 0 so large that the latter inequality is fulfilled if the ex- 

pression in square brackets is positive. 
Thus, the conditions of positive definition of the function W (the sufficient conditions 

for stability) reduce to the three inequalities 

al < 9, aiS1 - yt2 > 9 

@iSi - 71’) - PO* (azOB1 + ai&” - 2~t~~“) - 2 (~rEr9z” + &%i%z”) - j&“%ta > 0 (3-R) 
We note that when the sufficient conditions for stability are fulfilled, solution (1.2) is 

stable with respect to the quantities p, p, z ; z *, U, t/r’. As regards the angular variable $, 
however, the circular orbits under consideration are unstable, since $ is a cyclic variable, 
This means that a satellite in perturbed motion travels along au orbit which is nearly circu- 
lar, although its angular distances $ can differ substantially from those characteristic of 
unperturbed motion. 

The above stability conditions are valid for the circular orbits of satellites moving around 
planets with axisymmetrical gravitational and dipole magnetic fields. 

4. Circular orbits of artificial Earth aatellites. The potential of the 
gravitational field of the terrestrial ellipsoid (i.e. of the Earth’s normal gravitational field) 
is apFoximated quite closely by a certain specially chosen potential. We shall make use of 
an approximating potential of the form proposed by Aksenov, Grebenikov and Demin [9], 

u=$ 
C vpz+ (Iz -iidJa + V/pa+ ZI + W 1 (i= v/-1) 
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Here ,u is the gravitational constant (p= 3.Y8602x 105 km3/secz) [lOI and d is the 
Earth’s compression characteristic (d = 210 km) 191. 

Despite the fact that the Earth’s magnetic axis does not coincide with its gravitational 
axis, the terrestrial magnetic field is approximated well by the field of a dipole. The Earth’s 
magnetic moment M is equal to 8.3 x 10 25CGSp [ll]. 

Proceeding from the expression for the potential of the Earth’s normal gravitational field 
and recallingthe fact that v po SW, we can write Eqs. (1.3) for the circular motions of a 
satellite in the form 

P 1 1 

oa --y [po2 + (z. - id)2]3X + [pcz + (20 + id)2]% > 

ko ( po2 - 2z02) 

+ (PO2 + z,z)Q = O , _ _\ 

CL zo - id zo + id 

[po” + (z. - id)2ris + [ po2 + (20 + id)2]Y’ 

3kop,rz, 
(4.11 

-- 
2 + (PO2 + zoz$” = O 

It is clear that p,,2 + to2 = r. 2> R2, where K = 6378.16 km [IO]. What are the possible 
values of the “magnetic coefficient’* k = eM/cm for motion in the Earth’s magnetic field? 
For any body the value of the specific charge e/m cannot exceed e/m = 1.76 x 10’ CGSp 
per gram of electron mass, since all electrization occurs through saturation by electrons or 
heavier ions. Hence, substituting into the expression for k the value of the Earth’s magne- 
tic moment M and the velocity of light c = 3 x 1010 cm/set, we find that 0 4 k <k,,,, 
where km,, = 4.8693 x 10x2 cm3/sec = 4.6893 x 107 kmJ/sec. 

Let us turn to the analysis of Eqs. (4.1). It is clear that for z,, = 0 (equatorial orbits) 
the second of Eqs. (4.1) is fulfilled; fulfillment of the first of these equations can be guar 
anteed by the proper choice of o and po. However, 
<k(k 

for z. f 0 in the real case (r. 7 R, 0 ( 
max) Eqs. (4.1) are not fulfilled, i.e. other circular orbits are impossible. 

Let us prove this. Reducing by z. in the second of Eqs. (4.1), we can obtain 

o = 5 (PO2 + Zo2)“” 1 - zoml id 1 + zo-l id 

2 3kpo= [ po2 + (z. - id)2f’1 + [pea + (f. + idJ2r” > 
The first of Eqs. (4.1) together with the second one can be transformed into 

2ko 

~2-(po~+zo~):l. 

p id --- 
2 20 { 

1 1 

[po2+(z.o-id)~]‘~a- [pox+(zc+id2$/B 1 =’ 
Introducing the complex notation 

1 

[ poz + (z. + id)2]“’ = a + ib 

we can write Eqs. (4.2) and (4.3) in the following form: 

o = (PO2 + roV’* 

3kpo2 
(Pa + pk $j (a = a1 v1+3-;; = ) 

2ko 

o2 - (PO2 + zoq 
+pb+=O 

i 
b= 

--I v---al l/l---~\ 

1s J& 1 

al = 0~2 + zd2 - da, bl = - 2zod, 1= I/ala + b12 
It is clear that 

Pb d I z. > 0 

This inequality is self-evident for Z, < 0, while for z. > 0 it follows from the inequality 

1 - (kl / Q2 < r/i + (kl / cl)* 
Inequality (4.6) makes it possible to obtain from Eqs. (4.4) the inequality 

o) > (PO2 + zo+ pa, 2k 2kmax 

---%kp,s @ < (po2 + Zo2f/’ < R2 
(4.7) 

If Z, > 0. after some transformations and elimination of positive terms, we obtain the 
following expression tom (4.7): 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

iL - d* 

j( 

da % 
a>- :1 v/Zk i-- i-+4 

Paz -t zoz (PO2 + ZOV” 

For Z, < 0, we find from (4.7) that 
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Jl. 
a> > 

(4.91 

Substituting in numerical values of /A, d, R, K,,,_, we see that ineqnalities (4.81 and 
(4.9) contradict the mcond inequality of (4.7). Sntce all of our inequalities were derived 
from Eqs. (4.1) under the assumption that zo $ 0, this contradiction indicatea that circular 
orbits are impossible for zo f 0. 

5. Stability of circular equatorSa orbito of artificial Earth aat- 
ellitea. For zo = 0 the second of Eqs. (4.11 is fulfilled, while the first becomes 

ko 
““f2-- 

IL 

(pea + dl)” - O 
(5.1) 

This equation enables us to obtain two groups of values for O, 

)“‘, k k2 Ir 71 
@=--- - 

2PoS 4po” + (poa _ da)% 

Clearly, opt > 0, 02 < 0, which corresponds to the motion of a satellite along a circular 
orbit in the direction of the Earth’s rotation and in the opposite direction, respectively. 

The neceaaery stability conditions (9) for circular equatorial orbits are of the form 

3ko 
-p08>0 (5.2) 

These inequalities can be sufficient conditions if we add to them the inequality 

p (PO2 - Ma) 

( po* - da)% 
-+>o (5.31 

Let ua investigate the sufficient stability conditions. If o = wt > 0, then the first of in- 
equalities (5.2) is fulfilled, while the second inequality and inequality (5.31 can be trans- 

formed into 

(5.4) 

(5.5) 

If o = o1 < 0, then the second of inequalities (5.2) and inequality (5.31 are fulfilled, 

cD = p (po? - 4d2) p 
3 ---- 

(po2 _ d2)*s'z ( po2 - d+ 
“.> 0 (5.61 

Thus, investigation of the stability of circular equatorial satellite orbits has been redu- 
ced to the analysis of inequalities (5.41 to (5.61. Let us estimate the quantities a,, 

@i = p (PO2 -i- a21 

(po2 - d")% 
If 

6 -_ 
1 + (1 + 4~po2/k2(Po2 _dS)'/.)'/* > 

I 

> p C 6 

( po2 - d+ i - 1 + (1 + 4p R3/k;,, )1’¶ 3 

2 

1 + (1 + 4ppo6jklk’ [pea - d”)‘/’ )Ilr I 
,> 

2 

1 + (1 + W3/k;,,)fh 3 

(Ds = ~(p$ - 4d”) + 
(p$- d2+* 

‘A 4ka 
-_ 

2Pod 
> 
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On substituting p, R, d,*kzmx into the expressions in square brackets in the estimates 
for at and a,, we see that @ > 0, @ 
positive quautity @oz - d2)3b f 

8. We can do the same for as, first bringing the 
ou si t e-the square brackets. Thus, the sufficient conditions 

for the stability of circular equatorial orbits are fulfilled. 
The author is grateful to V.V. Romiantsev for his critical comments. 
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